Solid Oxide Fuel Cells: Challenges and Opportunities

Gary Simon

May 31, 2006

Primary Advantages of the SOFC

- Long life over 25,000 hours
- CO Tolerance a fuel not a poison
- Internal reformation of light hydrocarbons
- Inexpensive cell materials no special catalysts
- High-grade waste heat 400-600 °C

Major Concerns with the SOFC

- Short life of peripheral seals need for perfectly flat plates, use of brittle seals
- Poor yield lack of uniformity of coatings, problems in firing, mismatch of coefficients of thermal expansion of three layers
- Mechanical stress on temperature change leading to long start-stop cycle
- Low power and volumetric density (bulky)
- Coking if fuel-air ratio off

Advantages of Tubular SOFC

	Acumentrics	Planar	
Start-up Time	< 45 minutes	Hours	
Thermal Cycles	>100 proven	<10 preferred	
Pressurized fuel	Not needed	Yes	
Reforming	Internal	External	
Sealing	Metallic, small area, deformations OK	Brittle glass at periphery, need for perfect flatness	
Interconnect	Silver Wire	Coated Metal Alloy	
Supports	Nickel Tube	High Alloy Metal	
Power Density	330 mW/cm ²	420 mW/cm ²	

Typical Planar Structure (Versa Power)

Baseline Stack

- Anode supported cells ~1mm in thickness
- Uncoated ferritic stainless steel sheet metal interconnect
- Cross-flow fluid delivery with manifolds integrated into the interconnect but not through the cell
- Compressible ceramic gasket seals
- External compression system

Actual Assembled Stack (Versa)

Acumentrics Stacks During Assembly

- Low pressure drop
- Minimal seal area
- Forgiving manufacturing process
- Adequate surface and flow rate for internal reforming
- Simple current collection
- Current both parallel and series

Acumentrics Generator Design

Flattened Tubes Becoming More Popular

Inter Connector

- Extruded base plate
- Tape-cast anode- electrolytecathode assembly
- Glued-on to base plate
- Electrical interconnect at end

Source: Kyocera

Flattened Tubes—Siemens Westinghouse

- Extruded with integral closed end cathode tube
- Electrolyte and anode coatings
- Interconnect via nickel stripe

Flattened Tubes—Rolls Royce

- Formed base plate
- Screen printed "window" layers
- Significant sealing area
- Interconnector at end

Rolls Royce Stack Assemblies

Opportunities

- SOFC may have best chance of being a commercially viable fuel cell technology—conventional and biofuels, quick start, durable
- Technology has advanced rapidly in last two years
- Rather than trying to pick winning technologies, try incentive contracts among multiple teams linked to achievement of milestones needed for commercial product

For 4 teams, minimum 10 kW system, \$ 2 million per team	Time to start-up	Efficiency on Natural gas (AC out, HHV)	No. of Thermal Cycles	Degrada -tion per 1000 hrs	Hours of operation@ 80% availability
To Qualify for Contract (at least 1 kW)	< 2 hours	30%	15	<5%	200
To Receive 50% Payment (>2 kW)	< 1 hour	35%	50	<3%	1000
To Receive 100% Payment (10 kW)	< 30 minutes	40%	100	<2%	3000
To Receive 50% Bonus Payment (10 kW)	< 10 minutes	45%	200	<1%	7000